Neurobiologie: Ein ruhiges Auge in der Bewegung

Fest im Blick dank Innenohr: Der Gleichgewichtssinn misst die Eigenbewegung, um den Blick zu stabilisieren. Eine neue Studie untersucht nun eine alternative neuronale Route – wovon auch Patienten mit sensorischen Defiziten profitieren könnten, teilt die Ludwig-Maximilians-Universität München (LMU) mit.

Soll ein Film ganz besonders unmittelbar und dokumentarisch wirken, muss meist eine „wacklige“ Handkamera die passenden Aufnahmen liefern. Unser Blick aber muss stabilisiert werden, um auf der Netzhaut der Augen ein konstantes Abbild zu behalten – für eine optimale Analyse durch das Gehirn, so der Bericht der LMU. Eine Voraussetzung dafür sei die Wahrnehmung der Eigenbewegung im Raum durch das Gleichgewichtsorgan im Innenohr. Diese sensorischen Signale werden in motorische Befehle für die Steuerung der Augenmuskeln umgewandelt. „Die genaue und zuverlässige Kontraktion dieser Muskeln sorgt dafür, dass die Augen im Raum gewissermaßen stillgehalten werden können“, sagt der LMU-Neurowissenschaftler Professor Hans Straka. Entsprechend galt die Umwandlung der Signale aus dem Innenohr in Steuerungsbefehle der Augenmuskulatur als zentraler Mechanismus der Blickstabilisierung während der Fortbewegung. Problematisch sei aber gewesen, dass die meisten Daten dazu aus Studien stammten, in denen Mensch oder Tier nur passiv bewegt wurden.

Den Blick direkt stabilisieren

„Für die Signalverarbeitung im Gehirn ist es aber wichtig, ob wir uns aktiv bewegen oder bewegt werden“, betont Straka. Denn nur während der aktiven Bewegung generieren Gehirn und Rückenmark Signale, die etwa die Beinmuskulatur kontrahieren lassen. Ein Forscherteam um Straka ging nun der Frage nach, ob diese Fortbewegungssignale die Augenmuskeln über sogenannte „intrinsische Efferenzkopien“ – die die erwartete Raumänderung gewissermaßen intern weitergeben und berechnen – ansteuern können, um den Blick auch ohne sensorischen Input zu stabilisieren.

Wichtig sei zudem die Frage gewesen, wie intrinsische und sensorische Signale interagieren, um den Blick durch kompensatorische Augenbewegungen zu stabilisieren. Die Studien – vom Verhalten bis zur zellulären Ebene – wurden an Kaulquappen durchgeführt, weil sie nach einem stereotypen Muster schwimmen und mit Auge und Innenohr über funktionsfähige sensorische Organe verfügen. Es habe sich gezeigt, dass intrinsische Efferenzkopien die Augen tatsächlich im Schwimmrhythmus in entgegengesetzte Richtung bewegen, um den Blick zu stabilisieren.

Zudem sei der Nachweis gelungen, dass im Rückenmark generierte Fortbewegungssignale direkt auf die Nervenzellen im Gehirn weitergeleitet werden, die dann die Augenmuskeln kontrahieren lassen. Was aber passiert, wenn die Tiere aktiv schwimmen und gleichzeitig passiv rotiert werden? „Dann werden die vestibulären Signale aus dem Innenohr, also die Antwort auf die passive Bewegung, unterdrückt“, sagt Straka. „Auch in diesem Fall sorgen die intrinsischen Efferenzkopiesignale für zeitlich und räumlich adäquate Augenbewegungen.“

Sensorische Defizite kompensieren

Diese Reaktion scheint spezifisch für Rotationen in horizontaler Ebene zu sein, so der Bericht der LMU: Bei Roll- oder Kippbewegungen der Tiere im Raum werden die sensorischen Signale nicht unterdrückt. „Es gibt auch weiterhin noch einige wichtige Fragen im Tiermodell zu klären“, sagt Straka. „Unsere Ergebnisse könnten aber auch für Patienten mit bestimmten Störungen des Innenohrs interessant sein. In Zusammenarbeit mit dem Deutschen Schwindelzentrum am Klinikum Großhadern wollen wir nun klären, inwieweit intrinsische Signale des Rückenmarks etwa bei einseitigem Ausfall des Gleichgewichtssinnes helfen könnten, sensorische Defizite zu kompensieren.“

Das Projekt wurde im Rahmen des Sonderforschungsbereichs (SFB) 870 „Bildung und Funktion neuronaler Schaltkreise in sensorischen Systemen“ durchgeführt.

Publikation:
Gaze Stabilization by Efference Copy Signaling without Sensory Feedback during Vertebrate Locomotion. François M. Lambert, Denis Combes, John Simmers, Hans Straka. Current Biology, 26 July 2012 (doi: 10.1016/j.cub.2012.07.019)

Website Prof. Dr. H. Straka:
http://www.neuro.bio.lmu.de/research_groups/res-straka_h/index.html

Quelle:
LMU

Ähnliche Beiträge